
TV Time - Seinfeld

 Project Documentation

Ryan Gengler

Josh Shell

Aaron Verst

Matt Klich

Visual Interfaces Data CS5124, CS8092

Application Design

Preliminary Layout

We decided to implement a similar layout to common applications for viewer familiarity and to

reduce the learning curve for understanding its usage. Therefore, we made a sidebar to separate

the filters from the data. We made a title bar to relay the reason for the application, and a footer

to note its authors.

Preliminary Visualizations

As depicted in the sketches above, we used the following visualizations. Using familiar and

simplified visualizations allows for quick adoption, especially for its intended audience. Also,

those familiar with Seinfeld are of the elderly audience; therefore, simple but effective

visualizations are required. Should they be savvier, tooltips and mouse movement are used to

relay further information on the selection.

Bar Graphs

Bar graphs were intended to allow users of our interface to compare character statistics with one

another. They are easy to implement but provide a great deal of overall value to a visualization

interface.

Word Clouds

Word clouds were included to provide the user with a glimpse into the personality and

uniqueness of each character. However, to achieve this, it was necessary to filter out stop words

and clean our dataset. In theory, the word cloud would contain common sayings and phrases

unique to each character.

Finalized Layout

The final layout was only slightly modified to that of the preliminary layout. First, we colorized

the headers and footer – further discussed below. Second, we allowed for some visualizations to

cross into two columns. This allowed for the viewer to effectively assess the visualization

without scrolling, brushing, or zooming in. Lastly, we added the logo in the header.

Finalized Visualizations

Bar Graphs

Bar graphs were used to allow users of our interface to compare character statistics with one

another. Bar graphs were the best way to represent statistics such as episode count and line

count. By mapping these on bar graphs, users can gain a visual sense of how many more specific

characters were involved in the show than others. These bar graphs also included tooltips that

display the exact values of data points.

Line Chart

Despite being absent from our preliminary design, our team decided to implement a line chart in

our visualization. This line chart is specific to each character and represents how many lines the

character speaks per episode. This chart provides a good indication of how involved a specific

character might be in a particular season or episode.

Word Clouds

Word clouds were used to relay personality and vocal trends within a specific character. By

analyzing every line by a character, the word cloud displayed the most common sayings and

phrases for each character throughout the duration of the show. By comparing the word clouds of

different characters, it is evident that some of them have vastly different personalities than

others.

Font & Size

The font that we used was intended to be recognized by the viewer as nominal. This method

allows the visitor to digest the text information without difficulty or delay in its comprehension.

The font was universal throughout the application.

Furthermore, the logo in the title was not only used because it looks good, but because the logo is

recognizable to the viewer. The logo was followed by text that further gave reason to the

application. This text was large to match a similar size of the logo, and also make it a title header

for the user.

The general text was kept to a readable size and varied by 2px depending on the header. For

example, the axis header vs tooltip. The footer text was also within this range as there was no

need to highlight it further as it was already separated by color and padding.

Color

The color was strategically chosen to match the Seinfeld theme. The brighter yellow background

in the title bar and the footer are from a later Seinfeld logo, and the logo used in the header is the

first Seinfeld logo. Therefore, the yellows do not clash.

The color was extracted by Adobe’s Photoshop software using a tool dubbed Eyedropper. We

can set the hexadecimal rounding of color from the desired radius. Or we can extract the exact

pixel upon click. The latter was used for all colors. Namely, the yellow used is #fcff00, the blue

used is #38a2ff, and the red used is #eb3500.

• Yellow was chosen as the title background color to not distract from the visualizations.

Yellow appears lighter, so the background of the visualizations could keep light.

• Blue was chosen for the sidebar as it has a higher contrast to the lighter background of

the visualizations and continues the Seinfeld theme.

• Red was chosen for the accented data in the visualizations such as bars and lines. Red is a

color known to draw immediate attention of the human eye, so it is fitting to immediately

highlight the data output.

• Black, being the highest in contrast to the visualization background, was selected for the

small and labeling elements of the visualizations. This was imperative to make it easy for

the viewer to see the small print of the visualizations. It also doesn’t draw attention away

from the data in red.

• Grey was subtly used behind the visualizations over white. The decision to do so was to

make it less bright for the viewer as white can sometimes be overpowering on some

computer screens, especially when there is a lot of it.

• White was left as the official background to the overlayed containers. If you zoom out

extremely far (unreasonable), the borders will reveal the white. This could be seen on

extremely large and wide sized screens. It provides the viewer with a small contrast to the

application and border.

Element Border & Thickness

The thickness we used was solely based on the data’s readability. This means if the text or

visualization elements were difficult to read because it was not prominent enough, the border

and/or thickness was increased. On the contrary, if it was too prominent or too large to

understand, then it was decreased. There was a happy medium.

Margin & Padding

We chose to separate the title by 100x in both directions. Not more as it would fill too much of

the screen, and not less as it would’ve provided the viewer with compactness. To understand the

data, we felt it was important to keep it uncongested.

The sidebar was specifically padded, not just with color, to permit familiar usability of an

application. We see in most applications that there is a menu of sorts that can control the visible

data; such as, filters, order, etc. Therefore, providing the viewer with familiarity reduced the

learning curve to adoption and usage.

The visualizations were separated with slight padding, but some offered their own by default.

Specifically, the world cloud has its own padding that seemed almost unreasonable. We suspect

this is due to all the other words that weren't visually there, so D3 thought it still needed space to

display those. We could simply reduce the number of words being displayed to regain reasonable

margins; however, since the data changes per character, this wasn’t a good solution.

Lastly, the footer is a bit smaller than the header, both in text and height. This was because of the

amount of information that needed display. Additionally, having it somewhat match the header

provided the viewer with a “full circle” and familiar experience to their nominal web app usage.

Layout Responsiveness

When on a smaller sized screen, the layout will condense to a single column and shorten the

sidebar width, without compromising the visualizations. Depending on how small, the

visualizations will not scale down as it would be too small for the viewer. However, the user is

able to scroll through L/R for the visualization.

On a regular desktop sized screen, the visualization layout will have 2 columns for elements. The

larger visualization (line chart) will be over 2 columns. The sidebar will also grow slightly if

space allows.

Implementation

Project Setup

Our work is hosted on a local web application, built on HTML, CSS, and JavaScript.

Visualizations were completed using the D3 library, and data manipulation was accomplished

through python and excel. To launch the web application, the user can use a simple python server

running on LocalHost:XXXX.

Directory Structure

The project folder was then expanded by the addition of:

i. index.html

ii. scripts.csv (dataset)

iii. scripts_cleaned.csv (dataset)

iv. Js directory containing various .js files which contain the source code for our

visualizations and interactions

External Packages Used

The team used the D3 starter template provided by Dr Aurisano, containing the D3 library.

We also used select2 for our dropdowns, which came in handy throughout the design process.

Challenges

One challenge we faced dealt with the line chart and being able to properly provide tooltips and

brushing interactions. Considering the x-axis was strings, we had a very hard time providing the

tooltip and the brush with numerical values. We even tried to give each of these string values a

numerical value to them, and it still did not work properly. A scroll bar was also attempted to be

implemented so that the x axis ticks were not so bunched up, but we were unable to figure out

how to do that either. Having string values as one of the parameters made it extremely difficult to

do anything other than create the chart. Even getting the chart to populate was extremely

difficult, considering we never ran into having to use strings as a parameter.

Another challenge that we ran into was getting the wordclouds to disappear after creating them

dynamically. When clicking on a character, a line chart and a wordcloud were dynamically

created, and when another character was selected, the line chart was replaced, but the wordcloud

was not. A new one was created for the selected character, but the previous wordcloud was not

replaced, so it continued to stay on the screen. We could not figure out exactly why this

happened, since the implementation of dynamically creating these visualizations were all the

same.

Development Process

Communication Platforms

We used Discord to communicate.

Code Development

All work was completed in VS Code, via Live Share so all engineers could work in parallel; at

major stopping points all work was backed-up via Git/GitHub.

Structuring the Code

The code was structured in a way that we had a .js file for each of the global charts (the charts

that represented all the characters) and then a single .js file for each of the dropdown capabilities.

Each time a character was clicked on, character_index.js, characterData.js, and

lines_per_episode.js were all used and designed in a way to dynamically create these

charts, so that there didn’t need to be six lines_per_episode.js files to cater to each of the

characters'’ data. This made the code base less cluttered and the code itself more efficient. We

designed it in a way so that if you did want to add more characters or seasons, it would be very

easy to do so. The wordcloud implementation was included in the character files and was created

along with the line chart. The same implementation was applied to the season dropdown, where

we had a “season_index.js” file, seasonData.js file, and a easonBarchart.js file and

these bar charts were also dynamically created once an option was selected.

Running the Code

Directions to run the code are provided in the GitHub repository’s README.md file

Individual Contributions

Ryan Gengler Created both general bar charts, designed

code that dynamically creates line chart,

wordcloud, and bar chart based on selection

of character or season

Aaron Verst Design sketches, design outline,

GitHub/Liveshare management, mapped

character/season dropdown selections to the

corresponding chart code, formatted UI, wrote

documentation, and video presentation.

Josh Shell Data cleaning, stopwords, other analyses.

Project setup, word cloud, boilerplate code for

charts, video presentation.

Matt Klich Coded the layout for all elements including

header with logo, sidebar, content area, and

footer. Colorized the application. Made it

responsive to window size. Wrote

documentation.

https://github.com/aaronverst/TV-Time-Seinfeld

	Application Design
	Preliminary Layout
	Preliminary Visualizations
	Bar Graphs
	Word Clouds

	Finalized Layout
	Finalized Visualizations
	Bar Graphs
	Line Chart
	Word Clouds

	Font & Size
	Color
	Element Border & Thickness
	Margin & Padding
	Layout Responsiveness

	Implementation
	Project Setup
	Directory Structure
	External Packages Used
	Challenges

	Development Process
	Communication Platforms
	Code Development
	Structuring the Code
	Running the Code
	Individual Contributions

